ARPAX

IPA/CPA Magnetic Circuit Protectors

IPAICPA SINGLE POLE CIRCUIT PROTECTORS

INTRODUCTION

The IPA/CPA Magnetic Circuit

Protectors provide low-cost power switching, reliable circuit protection and accurate circuit control for equipment in the international marketplace.

IPA models meet IEC spacing requirements that are mandatory for equipment which must comply with IEC specifications 601 and 950 and VDE specifications 0804 and 0805. In addition, they are UL Recognized as supplementary protectors per UL STD. 1077, CSA Certified as supplementary protectors per CSA C 22.2-No. 235, TUV Approved to VDE 0642 (EN60934), CCC Approved (pending) and CE Compliant.

Designed using the latest in sensitive hydraulic magnetic technology, the IPA line adapts itself to many applications and environments. They're ideal for data processing and business machines, medical instrumentation, broadcast equipment, vending and amusement machines, military applications and wherever precision operation is required. Temperature differences which affect fuses and other thermal devices are not a concern.

One important feature of this protector line is a "trip free" action, which means the circuit will trip in the presence of an overload even though the handle is held in the ON position. The delay mechanism senses the fault and the contacts open.

The IPA is available in configurations including series and series with auxiliary switch, with a choice of delays and ratings in either DC, $50 / 60 \mathrm{~Hz}$ or 400 Hz versions. Single or multi-pole versions are available, with a variety of pole arrangements to meet your specifications.

Notes:

1. Tolerance $\pm .015$ [.38] unless noted. Dimensions in brackets [] are millimeters.
2. Main circuit breaker terminals are stationary male push-on type: . 248 [6.30] wide x . 031 [.787] thick x . 474 [12.00] long, or screw type: M4 x . 354 [8.99] wide $x .031$ [.787] thick $x .474$ [12.00] long.

IPAICPA MULTI-POLE CIRCUIT PROTECTORS

Two Pole Protectors

An assembly consisting of two single pole units, having their trip mechanisms internally coupled and with a single toggle handle, forms the IPA-11 with quick-connect D.I.N.-style terminals. Individual poles may differ in ratings, delays and internal connections. An auxiliary switch may be included in either or both poles, allowing you to mix SELV and hazardous voltages. Rugged screw-type terminals can be provided, in which case the designation would be IPA-66. The IPAH offers a toggle handle for each pole.

Three Pole Protectors

The three pole construction consists of three single pole units assembled with an internal mechanical interlock which actuates all units simultaneously. A single toggle handle operates all three poles
for quick and convenient control, or if preferred, a handle per pole is available. The individual poles need not have identical characteristics and any series trip pole may have an auxiliary switch. If screw-type terminals are required, the breaker designation will be IPA-666 for a three pole version.

Breaker poles are numbered consecutively when viewed from the terminal side, with the ON position up, starting with Pole \#1 on the left side and proceeding to the right.

Handles

The IPAH two and three pole models are available with a handle per pole.

IPA/CPA

Two Pole Protectors (one handle)

(Optional: Handle may be located in Pole 1 instead of Pole 2)

Three Pole Protectors
(one handle)

Mounting Details

Two Pole

Three Pole

Note: Tolerance $\pm .015$ [.38] unless noted. Dimensions in Brackets [] are millimeters.

IPA/CPA
Two Pole Protectors (one handle)

(Optional: Handle may be located in Pole 1 instead of Pole 2)

Mounting Details

Two Pole

Three Pole

Note: Tolerance $\pm .015$ [.38] unless noted. Dimensions in Brackets [] are millimeters.

Printed Circuit Board Mounting Terminal Type "S"

Mounting Detail

(Auxiliary switch is not recommended with this type mounting.)

Note: Tolerance $\pm .015$ [.38] unless noted. Dimensions in brackets [] are millimeters.

Printed Circuit Board Mounting Terminal Type "R"

Mounting Detail

Printed Circuit Board Mounting Terminal Type "L"

Mounting Detail

Note: Tolerance $\pm .015$ [.38] unless noted. Dimensions in brackets [] are millimeters.

IPA/CPA CONFIGURATIONS

Series Trip

The most popular configuration for magnetic protectors is the series trip where the sensing coil and contacts are in series with the load being protected. In addition to providing conventional overcurrent protection, the handle position conveniently indicates circuit status.

Auxiliary Switch (Applies to Series Trip Only)

This is furnished as an integral part of a series pole in single or multi-pole assemblies. Isolated electrically from the protector's circuit, the switch works in unison with the power contacts and provides indication at a remote location of the protector's on-off status.

Auxiliary switch contacts actuate simultaneously with the main breaker contacts, and will open regardless of whether the breaker contacts are opened manually or electrically. For auxiliary switch ratings below 6 Vac or 5 Vdc , an auxiliary switch with gold contacts, designated as REG, is available. Gold contacts are not recommended for load current above 100 milliamps. An optional auxiliary switch, RS, configuration allows an alarm or signal to be forwarded only upon electrical overload, allowing for easier detection of fault circuit.

Series Trip

Series with Auxiliary Switch

C-NC $=$ Breaker in "OFF" position.

Series with Auxiliary Switch

Breaker in "ON" or manually turned "OFF" position.

Breaker in electrically tripped
"OFF" position.
Auxiliary Alarm
Switch (IRS4, IRSG4)

Notes:

1. Main circuit protector terminals are stationary male push-on type: . 248 [6.30] wide x 031 [.787] thick x .474 [12.00] long, or screw type: M4 x . 354 [8.99] wide x .031 [.787] thick x .474 [12.00] long.
2. Auxiliary switch terminals are: 110 [2.79] wide $x .020$ [0.51] thick x . 343 [8.71] long.
3. Tolerance $\pm .015$ [.38] unless noted. Dimensions in brackets [] are millimeters.

IPAICPA OPERATING CHARACTERISTICS

Agency Approvals

Voltage (V)				Rated Current (A) Minimum/Maximum		Interrupting Capacity, Amps	
IPA							
Max Rating (V)	Frequency (Hz)	Phase	Minimum Poles	UL/CSA	TUV	UL1077 \& CSA	TUV
65	DC	-	1	. $05-30$.05-25	3000	1000 (PC1)
80	DC	-	1	. $05-20$		300	
240	50/60	$1 \& 3$	1	25.1-30		1000 (1)	
250	50/60	1\&3	1	. $05-25$.05-25	1000 (2)	1000 (PC1)
250	50/60	1	2	. $05-30$. $05-30$	1500	1500 (PC1)
250	400	$1 \& 3$	1	. $10-15$. $05-15$	1000	1000 (PC1)
CPA							
Max Rating (V)	Frequency (Hz)	Phase	Minimum Poles	UL	TUV	UL489A	TUV
65	DC	-	1	1-30	-	1000	-
Notes: (1) with 4 times rated series backup fuse. (2) with 80A max. series fuse.							

Typical Protector Resistance/Impedance Chart

Current ratings in amperes*	Series Type (Except Delay 40, 50, 60)		
	DC - Ohms	AC50/60Hz - Ohms	AC400Hz - Ohms
. 05	427.	478.	
. 1	100.	103.	204.
. 25	19.	20.	34.
. 5	4.6	6.3	8.2
. 75	2.04	2.06	3.52
1.	. 91	. 92	1.86
2.5	. 17	. 19	. 28
5.	. 045	. 046	. 073
7.5	. 018	. 019	. 037
10.	. 013	. 014	. 020
15.	. 0072	. 0073	. 0109
20.	. 005	. 0051	
25.	. 003	. 0035	
Notes: DCR and Impedance values are based on measurements by the voltmeter ammeter method. Rated current is applied for one hour and at a voltage not less than 20 volts. Ambient temperature: 25 C ; Tolerance: Below $10 \mathrm{amps} \pm 25 \%$; Above $10 \mathrm{amps} \pm 50 \%$; *Consult factory for special values and for coil impedance of delays not shown.			

Percentage Overload vs Trip Time in Seconds

	Delay	100\%	125\%	150\%	200\%	400\%	600\%	800\%	1000\%
400 Hz	40	No trip	May trip	May trip	. 090 max.	. 060 max.	. 050 max.	. 040 max.	. 035 max.
	41	No trip	May trip	.2-9	. 09 - 3	. 02 - . 6	. 006 - . 3	. $003-.2$. 003 -. 15
	42	No trip	May trip	3-80	1-25	. $06-4$. $01-1.5$. 004 - . 6	. $003-.3$
	400	No trip	May trip	20-900	6-250	. 2 -45	. 01 - 6	. $003-.9$. $003-.5$
DC	51*	No trip	. 5-16	. 3 - 5	.13-1.5	. $03-.2$. 005 - . 1	. 003 - . 05	. 003 - . 025
	52*	No trip	7-100	3-40	.620-15	. $12-2.5$. 003 - . 5	. 003 - . 05	. 003 - . 025
	59*	No trip	. 120 max.	. 073 max.	. 038 max.	. 021 max.	. 017 max.	. 017 max.	. 017 max.
	500	No trip	70-800	25-300	10-100	1.2-20	.007-5	. 004 - . 65	. 003 - . 1
50/60 Hz	61	No trip	. 7 -15	. 3-4	. $1-1.3$. $02-.25$. $006-.13$. $003-.07$. 003 - . 04
	62	No trip	12-180	6-70	2-25	. $15-3.5$. 005 - . 3	. 004 -. 13	. 004 -. 04
	69	No trip	. 120 max.	. 073 max.	. 038 max.	. 021 max.	. 017 max.	. 017 max.	. 017 max.
	600	No trip	50-800	20-300	5.5-110	.3-17	. $008-2.5$. 004 - . 5	. 004 - . 1

[^0]
IPAICPA DELAY CURVES

DC, 50/60Hz, 400Hz Delay Curves (typ)

A choice of delays is offered for $\mathrm{DC}, 50 / 60 \mathrm{~Hz}$ and 400 Hz applications. Delays 40,59 and 69 provide fast acting, instantaneous trip and are often used to protect sensitive electronic equipment (not recommended where a known inrush exists). Delays 41, 51 and 61 have a short delay for general purpose applications. Delays 42, 52 and 62 are long enough to start certain types of motors and most transformer and capacitor loads. Delays 400,500 and 600 are long delays for special motor applications.

DC Delay Curves (typ)

400Hz Delay Curves (typ)

Trip Free

Will trip open on overload, even when the handle is forcibly held on or restrained. This prevents operator from damaging the circuit by holding the handle in the ON position.

Trip Indication

The operating handle moves positively to the OFF position.

Ambient Operation

IPA protectors operate in temperatures between $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$.

Insulation Resistance

Not less than 100 megohms at 500 volts DC.

Dielectric Strength

IPA protectors withstand $3000 \mathrm{Vac}, 60 \mathrm{~Hz}$ for 60 seconds between all electrically isolated terminals except auxiliary switch terminals shall withstand $500 \mathrm{Vac}, 60 \mathrm{~Hz}$ for REG and REC types.

Endurance

Operating as a switch, the operating life exceeds 10,000 operations, at rated current, at a rate of 6 per minute.

Electrical Characteristics

IPA protectors are rated .050 to 30 amperes 65 Vdc ; .050 to 30 amperes 240 Vac $50 / 60 \mathrm{~Hz}$; 0.050 to 15 amperes $250 \mathrm{Vac}, 400 \mathrm{~Hz}$.

Construction

Series and series with auxiliary switch available in various delays and combinations.

Auxiliary and Alarm Switch

When supplied shall be S.P.D.T. configuration with a maximum rating of 3.0 amperes, 250 Vac resistive load. Gold contacts are rated at .100 amperes, 125 V ac resistive load.

Moisture Resistance

Meet all the requirements of MIL-PRF-55629 when tested in accordance with Method 106 of MIL-STD-202.

Salt Spray (Corrosion)

Meet the requirements of MIL-PRF-55629 when tested in accordance with Method 101 of MIL-STD-202.

Shock

Circuit protectors shall not trip when tested per MIL-STD-202, Method 213, Test Condition B with 100\% rated current applied to delayed units and 80\% rated current to instantaneous units. Units with auxiliary switches will withstand 30G max.

Vibration

Circuit protectors shall not trip when vibrated per MIL-STD-202, Method 201, Test Condition A with 100\% rated current applied to delayed units and 80% rated current to instantaneous units.

Poles

One through three poles available.

Recommended Torque Specifications	
$6-32$ mounting screws	$6-8$ inch-pounds
M3 mounting screws	$4-5$ inch-pounds
M4 terminal screws	$10-12$ inch-pounds

Note: Where applicable, mechanical support must be provided to the terminals when applying torque.

Approximate Weight Per Pole

Ounces	Grams
1.7	48

Inrush Pulse Tolerance

Delay	Pulse Tolerance
$61,62,600$	8 times rated current
$61 \mathrm{~F}, 62 \mathrm{~F}, 600 \mathrm{~F}$	12 times rated current

The table above provides a comparison of inrush pulse tolerance with and without the inertia delay feature for each of the $50 / 60 \mathrm{~Hz}$ delays. Pulse tolerance is defined as a single pulse of half sine wave peak current amplitude of 8 milliseconds duration that will not trip the circuit protector.

IPAICPA DECISION TABLES

How to Order

The ordering code for IPA/CPA protectors may be determined by following the steps in the decision tables shown here.

Note:

A The coding given permits a self-assigning part number.Other configurations may require a factory assigned part number. Typical examples are units with mixed ratings, combinations of styles or construction. With these, it is suggested that order entry be by description and/or drawings and a part number will be assigned. Additionally, it is a standard policy to establish a factory assigned part number wherever a descriptive drawing exits to provide cross reference, traceability and manufacturing control.

$\mathbf{1}$	First Decision
Type	
IPA	One toggle handle per unit UL Recognized
IPAP	One toggle handle per unit UL Recognized PC board mount
IPAH	One toggle handle per pole UL Recognized
IPAHP	One toggle handle per pole UL Recognized PC board mount
CPA	One toggle handle per unit UL Listed per UL489A
CPAH	One toggle handle per pole UL Listed per UL489A

2	Second Decision
Poles	
-1	Single pole w/ quick connect terminals or $P C$ board if P is used.
-11	Two pole w/ quick connect terminals or $P C$ board if P is used.
-111	Three pole w/ quick connect terminals or $P C$ board if P is used.
-6	Single pole w/ screw terminals
-66	Two pole w/ screw terminals
-666	Three pole w/ screw terminals

$\mathbf{y n}$	Fourth Decision
Frequency \& Delay	
SW	Switch only
-40	400 Hz instant trip
-41	400 Hz short delay
-42	400 Hz long delay
-400	400 Hz motor start
-50	DC instant trip*
-51	DC short delay*
-52	DC long delay*
-500	DC motor start
-60	$50 / 60 \mathrm{~Hz}$ instant trip
-61	$50 / 60 \mathrm{~Hz}$ short delay
-62	$50 / 60 \mathrm{~Hz}$ long delay
-600	$50 / 60 \mathrm{~Hz}$ motor start
Note:	For addition of inertial delay, add an "F" to any delay numeral. (Example: 62 F$)$ *CPA types are only available with DC ratings.

[^0]: Notes: All trip times and trip currents are specified with the protector mounted in the normal vertical position at ambient temperature of 25 C
 Breakers do not carry current prior to application of overload.
 *CPA type units are available only with 51,52 and 59 delays

