

Designed specifically for the 35 mm symmetrical DIN rail, Airpax IALHR, IULHR and IELHR series Rail-Mount Magnetic circuit protectors offer the advantages of quick and easy mounting or removal which results in efficient and economical wiring, while conserving space. These circuit protectors are available in $1,2,3$ and 4 pole models, with a choice of handle colors with on/off and international I/O markings. These protectors comply with UL and CSA standards and meet IEC and VDE spacing requirements. Typical applications include computers and peripherals, telecommunications, medical equipment, machine tools and process control instrumentation. They provide the reliable performance associated with magnetic circuit protection.

Mounting

These circuit protectors are designed to mount on standard 35 mm DIN rails, such as 35×7.5 or 35×15 per DIN EN50022. Other specialty rails are available from suppliers that provide a means of mounting non DIN mount components by means of special captive jam nuts.

IELR Rail-Mount Magnetic Circuit Protectors
IELR Rail-Mount Configurations 188
IELR Rail-Mount Operating Characteristics 189
IELR Rail-Mount Delay Curves 190
IELR Rail-Mount Specifications 194
Decision Tables 194

Single Pole

Two Pole

Note: Tolerance $\pm .015$ [.38] unless noted. Dimensions in brackets [] are millimeters.

DIM. "A"	
1 pole	$.750 \pm .02(19.05 \pm .5)$
2 pole	$1.515(38.48) \max$.
3 pole	$2.265(57.53) \max$.
4 pole	$3.015(76.58) \max$.

IELRRAIL-MOUNT CONFIGURATIONS

Series Trip

The most popular configuration for magnetic protectors is the series trip where the sensing coil and contacts are in series with the load being protected. The handle position conveniently indicates circuit status. In addition to providing conventional overcurrent protection, it's simultaneously used as an on-off switch.

Switch Only

In the event that over-current protection is not desired, the coil mechanism can be deleted, providing an excellent low cost, single or multi-pole power switch.

Series

Switch Only

Three Pole Schematic Diagram

Typical Protector Resistance/Impedance Chart

Current Ratings in Amperes	DC Delays	50/60Hz Delays	400Hz Delays
	Resistance in Ohms	Impedance in Ohms	Impedance in Ohms
	51, 52, 53, 59	61, 62, 63, 69	$41,42,43,49$
. 200	45.8	28.5	71.94
1.0	1.38	1.10	2.85
2.0	. 371	. 29	. 76
5.0	. 055	. 051	. 12
10.0	. 017	. 016	. 032
20.0	. 006	. 006	. 010
30.0	. 003	. 004	. 006
50.0	. 0019	. 0018	. 0019
60.0	. 00157	. 00134	
70.0	. 00147	. 00133	
Notes: DCR and impedance based on 100% rated current applied and stabilized for a minimum of one hour. Tolerance $.05-2.5$ amperes $\pm 20 \% ; 2.6-20$ amperes $\pm 25 \% ; 21$ - 70 amperes $\pm 50 \%$. Consult factory for special values and for coil impedance of delays not shown.			

Percentage Overload vs Trip Time in Seconds for Delay Curves

Delay	100\%	125\% (Note A)	150\%	200\%	400\%	600\%	800\%	1000\%
41	No trip	May trip	.5-8	.15-1.9	.02-4	. 006 - . 25	. 000 - . 1	. 004 - . 05
42	No trip	May trip	5-70	2.2-25	.40-5	. 012 - 2	. $006-.2$. 006 - . 15
43	No trip	May trip	35-350	12-120	1.5-20	. 012 - 2.2	. $01-.22$. $01-1$
49	No trip	May trip	. 100 max.	. 050 max.	. 020 max.	. 020 max.	. 020 max.	. 020 max.
51	No trip	. $5-6.5$. 3 - 3	. $1-1.2$. 031 - . 5	. 011 - . 25	. 004 - . 1	. 004 - . 08
52	No trip	2-60	1.8-30	1-10	.15-2	.04-1	. 008 - . 5	. 006 -. 1
53	No trip	80-700	40-400	15-150	2-20	.23-9	. 018 - . 55	. 012 -. 2
59	No trip	. 120 max.	. 100 max.	. 050 max.	. 022 max.	. 017 max.	. 017 max.	. 017 max.
61	No trip	. $7-12$. $35-7$.130-3	.030-1	. $015-.3$. $01-.15$. 008 - . 1
62	No trip	10-120	6-60	2-20	. 2 - 3	.02-2	. $015-.8$. $01-.25$
63	No trip	50-700	30-400	10-150	1.5-20	. 4 -10	. $013-.85$. 013 - . 5
69	No trip	. 120 max.	. 100 max.	. 050 max.	. 022 max.	. 017 max.	. 017 max.	. 017 max.
71	No trip	. $44-10$. 3 - 7	. 1 - 3	.03-1	. 012 - 3	. $004-.15$. 004 - . 1
72	No trip	1.8-100	1.7-60	1-20	.15-3	.04-2	. 008 - . 79	. 006 - . 28
73	No trip	50-600	30-400	10-150	1.8-20	. 22 -10	. 18 - . 88	. 011 - . 5
79	No trip	. 120 max.	. 100 max.	. 050 max.	. 023 max.	. 016 max.	. 015 max.	. 015 max.

Notes: All trip times and trip currents are specified with the protector mounted in the normal vertical position at ambient temperature of 25 C .
P rotectors do not carry current prior to application of overload.
A. 135% for delays $71,72,73$ and 79 .

Inrush Pulse Tolerance

Pulse tolerance is defined as a single pulse of half sine wave $50 / 60 \mathrm{~Hz}$ peak current amplitude of 8 milliseconds duration that will not trip the circuit breaker.

Delay	Pulse Tolerance
$61,62,63(.1-70 \mathrm{amp})$.	12 times (approx.) rated current
$61 \mathrm{~F}, 62 \mathrm{~F}, 63 \mathrm{~F}(.1-25 \mathrm{amp})$.	20 times rated current
$61 \mathrm{~F}, 62 \mathrm{~F}, 63 \mathrm{~F}(25.1-70 \mathrm{amp})$.	18 times rated current

IELR RAIL-MOUNT DELAY CURVES

400Hz, DC, 50/60Hz Delay Curves (typ)

A choice of delays is offered for DC, $50 / 60 \mathrm{~Hz}, 400 \mathrm{~Hz}$, or combined DC/50/60Hz applications. Delays 49, 59, 69 and 79 provide fast acting, instantaneous tripping and are often used to protect sensitive electronic equipment (not recommended where a known inrush exists). Delays 41, 51, 61 and 71 have a short delay for general purpose applications. Delays $42,52,62$ and 72 are long enough for most transformers and capacitor loads. Delays 43,53, 63 and 73 are extra long for special motor applications.

50/60Hz Delay Curves (typ)

DC Delay Curves (typ)

IELR RAIL-MOUNT DELAY CURVES

DC/50/60Hz Delay Curves (typ) (Multi-Frequency)

IELR RAIL-MOUNT SPECIFICATIONS IELR RAIL-MOUNT DECISION TABLES

Insulation Resistance

100 megohm minimum at 500 Vdc between all electrically isolated terminals.

Dielectric Strength

3750 Vac (3750V~) shall withstand AC voltages $50 / 60 \mathrm{~Hz}$ for 60 seconds between all electrically isolated terminals.

Endurance

Circuit breakers shall operate a minimum of 10,000 operations; 6,000 with rated current and voltage and 4,000 with no load.

Operating Temperature

$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

IEC 144 Classification

Type handle spacings-IP40. Terminals-IP00.

Moisture Resistance

10 days, 95 percent relative humidity at $40^{\circ} \mathrm{C}$ in accordance with IEC68-2-3, test C.

Salt Spray

Five percent solution at $35^{\circ} \mathrm{C}$ in accordance with IEC68-2-11, test $K, 48$ hours.

How to Order

The ordering code for IELR circuit protectors may be determined by following the steps in the decision tables shown here.

The coding given permits a self-assigning part number, but with limitations. Using the illustrated coding system, it will automatically be assumed that all poles are identical. When all poles of a multi-pole protector are not identical, please contact an Airpax sales representative or the factory for a part number. One great virtue of magnetic circuit protectors is their adaptability to complex circuits. Thus, variations from pole to pole can become the rule rather than the exception. Descriptive drawings are recommended to avoid confusion.

When specifying a protector for AC motor start or high inrush applications, it is helpful to know the peak amplitude and surge duration for proper protector selection.

The part number example on page 185 is for a single pole IELR. It is series trip, delay 61, 20 amperes and has a black handle, and is VDE approved.

Notes:

When poles are not identical, each pole is to be described and a special Airpax number will be assigned.

Thomas \& Betts (T\&B) Narrow Tongue Lug P/N 55116 is recommended for units rated above 50A. The T\&B lug or an equivalent must be used on units rated 70A and above.

Shock

$50 \mathrm{~g}, 11 \mathrm{~m}$ sec, half sine with rated current, except no current with handle down. Instantaneous units use 80 percent rated current. Test in accordance with IEC68-2-27, test Ea. This assumes that adequate end stops are used to prevent longitudinal movement of the circuit protector.

Vibration

$4 \mathrm{~g}, 5-500 \mathrm{~Hz}$ (maximum double amplitude displacement 1.5 mm) with rated current except no current with handle down. Instantaneous units use 80 percent rated current, in accordance with IEC68-2-6, test F, method A, one hour per plane. This assumes that adequate end stops will be used to prevent longitudinal movement of the circuit protector.

Agency Approvals

Voltage (V)	Rated Current (A) Minimum/Maximum	Interrupting Capacity (A)

IAL/IUL/IEL

Maximum Rating (V)	Frequency (Hz)	Phase	Minimum Poles	UL/CSA	VDE	ULI077 \&CSA	VDE
80	DC	-	1	$.05-50$	$.10-50$	7500	4000
80	DC	-	1	$.05-70$		7500	
80	DC	-	1	$.05-100$		10000	
250	$50 / 60$	$1 \& 3$	1	$.05-50$	$.10-50$	3500	2000
250	$50 / 60$	$1 \& 3$	1	$.05-70$		2000	
250	$50 / 60$	$1 \& 3$	1	$.05-50$		$5000(1)$	
250	$50 / 60$	$1 \& 3$	1	$.05-70$		$5000(1)$	
277	$50 / 60$	1	1	$.05-50$		2000	
277	$50 / 60$	1	1	$.05-50$		$5000(1)$	
$240 / 415$	$50 / 60$	$1 \& 3$	2	$.05-50$	$.10-30$	2000	2000
$240 / 415$	$50 / 60$	$1 \& 3$	2	$.05-50$		$5000(1)$	
$277 / 480$	$50 / 60$	3	2	$.05-30$		2000	
250	400	$1 \& 3$	1	$.05-50$		1750	

Note: (1) with 125A max series fuse.

